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Abstract—Standards-referenced educational reform has
increased the prevalence of standardized testing; however,
whether these tests accurately measure students’ competen-
cies has been questioned. This may be due to domain-speci-
fic assessments placing a differing domain-general cognitive
load on test-takers. To investigate this possibility, functional
magnetic resonance imaging (fMRI) was used to identify and
quantify the neural correlates of performance on current,
international standardized methods of spelling assessment.
Out-of-scanner testing was used to further examine differ-
ences in assessment results. Results provide converging
evidence that: (a) the spelling assessments differed in the
cognitive load placed on test-takers; (b) performance
decreased with increasing cognitive load of the assessment;
and (c) brain regions associated with working memory were
more highly activated during performance of assessments
that were higher in cognitive load. These findings suggest
that assessment design should optimize the cognitive load
placed on test-takers, to ensure students’ results are an accu-
rate reflection of their true levels of competency. © 2015 The
Authors. Published by Elsevier Ltd. on behalf of IBRO. This is
an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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maximize validity and reliability in measuring students’
abilities (Borsboom et al., 2004). In pursuit of this aim,
standards-based educational reform has increased the
prevalence of standardized testing and the stakes associ-
ated with students’ results on these tests (Pellegrino,
2001). In fact, internationally, schools are often funded
and publicly ranked based on these results. Yet, the
extent to which these tests accurately index students’
competencies has been questioned (Pellegrino, 2001;
Wiliam, 2003). Specifically, it has been argued that many
standardized national curriculum assessments may also
assess _domain-general (i.e., general purpose, content-
free) cognitive capacities in the attempt to assess literacy
and numeracy knowledge and skills (Willet and Gardiner,
2009). In support of this suggestion, neuroimaging
research suggests that even the simplest literacy and
numeracy tasks engage domain-general cognitive net-
works (Baddeley, 2003; Knudsen, 2007). The domain-
general resource most commonly implicated in students’
performance on standardized assessments is working
memory, whose capacity-limited nature constrains the
amount of information that concurrently can be activated,
maintained, and manipulated in mind (Engle, 2010). It is
therefore unclear whether standardized assessment
results reflect students’ true literacy and numeracy
competencies or whether their scores have been
restricted by the limits of their domain-general cognitive
resources (e.g., the cognitive demands of the assessment
outpacing students’ available working memory capacity).

The effects of divergent domain-general cognitive
demands are evidenced by research indicating that
children’s ability to demonstrate their knowledge and
skills varies by type of assessment. For instance, in the
area of literacy assessment, a recent study found that
75% of students were better able to spell dictated words
than correct visually presented misspelled words (the
latter based on Australia’s National Assessment
Program — Literacy and Numeracy, or NAPLAN, method
of spelling assessment; Willet and Gardiner, 2009). This
finding is consistent with additional studies suggesting
that error_correction and proofreading tasks typically
involve more than just spelling ability (Croft, 1982;
Frisbie and Cantor, 1995; although for conflicting results,
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see Westwood, 1999). This suggests at least some vari-
ability in spelling performance may be related to individual
differences in domain-general cognitive abilities.
Specifically, correcting misspelled words may also require
the cognitive flexibility to switch between orthographic
representations, thereby placing greater demands on
working memory. In fact, working memory has been
shown to underlie performance on a broad range of stan-
dardized and educational assessments (Gathercole et al.,
2003; Strattman and Hodson, 2005; Alloway and
Gregory, 2012) and is a particularly powerful predictor of
academic achievement (including literacy and numeracy
achievement; Blair and Razza, 2007; Best et al., 2011).

Cognitive load researchers have similarly highlighted
how the complexity of information and its method of
presentation can overwhelm children’s limited working
memory capacity (van Merrienboer and Sweller, 2005;
Kirschner et al., 2011), thus restricting students’ ability
to acquire and demonstrate their emerging academic
competencies. Although fundamentally a theory of learn-
ing and instructional design, Cognitive Load Theory prin-
ciples are similarly applicable to educational assessment
in that assessment, like instruction, can impose more or
less demand (cognitive load) on test-takers’ working
memory. Differences in cognitive load across assess-
ments can occur as a function of the inherent complexity
of the knowledge and skills being assessed (intrinsic
load), immaterial aspects of the assessment relative to
the knowledge and skills being assessed (extraneous
load), and the mental effort expended on assessment-
relevant processes (germane load). For instance, the
assessment of whether a student can spell a particular
word can be described as being low in element interactiv-
ity (successful performance requires minimal reference
to, or interaction of, other learned concepts or proce-
dures; Sweller, 1994) compared to correcting a mis-
spelling of that same word. The latter imposes a higher
cognitive load, although the specific type of load imposed
is less clear. That is, if the assessment aimed to evaluate
students’ proofreading abilities, the additional load could
be characterized as intrinsic load (although this would
be an assessment of, at least partly, different knowledge
and skills than spelling). However, if the assessment
aimed to measure the level of complexity at which stu-
dents could accurately spell, the additional load could
be characterized as extraneous (in that proofreading is
a non-essential process for producing the correct spelling
of a word). More than just semantics, it is notable that
many large-scale, national assessment programs
characterize the knowledge and skills they assess using
identical terms (e.g., ‘spelling’), yet assess these abilities
in a highly disparate manner. As a consequence, these
assessments may vary in the cognitive demands placed
on test-takers’ working memory, even when the domain-
specific knowledge and skills they assess remain con-
stant. This has important implications for interpretation
of assessment results (especially given individual differ-
ences in working memory capacity and the resulting dif-
ferential effect on test performance that may occur) and
designing appropriate educational experiences to foster
the assessed knowledge and skills.

Although this issue of the domain-general demands of
domain-specific assessments is derived from education, it
is not easily addressed by traditional educational research
methods. For example, neither qualitative nor behavioral
studies of spelling assessment are able to conclusively
determine the extent to which observed performance
differences are spurious (e.g., due to situational or
motivational factors), transitory (e.g., due to temporary
practice effects), or the product of more fundamental
cognitive processes underlying learning and
performance (e.g., the varied cognitive load of different
modes of assessment). This is an ongoing issue for
educational psychologists. Mechanisms of learning and
performance are too often defined in operationist terms
as psychometric constructs measured exclusively by
tests (Michell, 2005; Kelly, 2011), which often are not
founded upon substantive theory or an understanding of
the function of the brain. The emerging field of educational
neuroscience, in contrast, seeks to leverage insights from
education, psychology and neuroscience to bridge the
gap between the conscious mind and living brain (Szucs
and Goswami, 2007). One advantage of applying neuros-
cientific methods to educational issues is that the con-
tributions of individual neural systems to academic
achievement (including domain-general systems) can be
identified and quantified (Vander Wyk and Pelphrey,
2011). These neuroanatomical findings can reconcile
emerging brain-based insights (such as brain-based evi-
dence of the cognitive load of different forms of assess-
ment) with established educational theory (such as
Cognitive Load Theory) to support, refine or advance
long-regarded principles of educational best practice
(e.g., Whelan, 2007).

The current study sought to combine neuroscientific
and behavioral research methods to examine the extent
to which domain-general neural correlates contribute to
performance on different modes of assessment.
Specifically, functional magnetic resonance imaging
(fMRI) was used to identify and quantify the domain-
general contributions facilitating performance on three
different spelling assessments (adapted from Australia’s
NAPLAN tests, the UK’s National Curriculum Tests, and
commercial standardized spelling assessments). In
addition, out-of-scanner spelling assessments were
used to further investigate the relationship between
brain (i.e., domain-general neural networks) and
behavior (i.e., assessment results). It was expected that
triangulation of these results would provide neurological
and behavioral evidence that spelling assessments differ
in the cognitive load they place on test-takers, as
evidenced by: (a) decreased spelling performance on
assessments that are higher in cognitive load; and (b)
working memory accounting for important variance on
assessments that impose greater cognitive load.
Specifically, it was expected that error correction
methods of spelling assessment (i.e., identify and
correct a misspelled word, in line with NAPLAN'’s
method of spelling assessment) would impose greater
cognitive load on test takers than dictation forms of
assessment (i.e., spell the dictated word, in line with the
UK’s National Curriculum Tests). As a consequence of
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this predicted difference in cognitive load, error correction
assessments were expected to additionally recruit areas
of the frontoparietal network, which are associated with
working memory and increased attention (e.g.,
prefrontal and parietal cortices; Corbetta and Shulman,
2002; Ashby et al., 2005).

Although spelling is considered by some to be a
‘constrained skill' (Paris, 2005), it was adopted here to
investigate the cognitive load of different forms of assess-
ment due to: (i) the compatibility of spelling assessments
with fMRI restrictions; (ii) the consistency with which spel-
ling is assessed through standardized assessments inter-
nationally; and (iii) the established link between spelling
and reading, insofar as both are found to rely on similar
knowledge and skills (Westwood, 2008) and improved
spelling has been suggested to enhance subsequent
reading ability (Graham et al., 2002; Santoro et al,
2006). It therefore follows that, although the current study
focused on spelling assessment, the insights generated
can inform principles of assessment development and
(re)design more broadly.

EXPERIMENTAL PROCEDURES
Participants

Participants were 12 university students recruited from
two large Australian universities. All participants were
healthy adults aged 18-35years (M = 22.00,
SD = 2.20; range = 19.11-26.50 years) with normal or
corrected-to-normal vision and no prior history of
neurological or psychological impairment. Two-thirds of
participants were female (n = 8). All participants were
native speakers of English. Participants gave written
informed consent as a requirement for participation.
This research was conducted in accordance with the
Declaration of Helsinki and approval to conduct this
research was obtained from the participating institutions’
human subjects review boards.

Measures

Spelling proficiency was assessed under each of the
following four experimental conditions (ordered from
highest to lowest cognitive load, in line with our
hypotheses): (1) auditory and textual presentation of a
sentence with a misspelled unidentified (MU) word to be
identified and then corrected (e.g., ‘Doctors innoculate
their patients to prevent illnesses such as smallpox’); (2)
auditory and textual presentation of a sentence with a
misspelled identified (MI) word to be corrected (e.g.,
‘The shops are in close *proksimity* to my house’); (3)
auditory and textual presentation of a sentence with a
missing word (Blank) for spelling (e.g., ‘My painting is

compared to that masterpiece’); and a
control condition involving (4) auditory and textual
presentation of a sentence with an identified, correctly
spelled word to be spelled (e.g., “The chocolate looked
*irresistible™). The first two conditions were based on
Australia’s NAPLAN tests and the third condition was
based on the UK’s National Curriculum Tests. Words
to be spelled for all conditions had been identified

as age-appropriate by standardized adult literacy
assessments. Sentences were developed for each word
and the resultant items were piloted (N = 31).
Sentences for the current study were selected on the
basis of accuracy between 10% and 95% in this pilot.
This criterion yielded 120 sentences, which were divided
evenly into the four conditions. Each condition was then
administered twice per fMRI scan (i.e., 15 sentences
per run). Sentence stimuli for each run and condition
were balanced on the basis of pilot test accuracy
(M = 0.64, SD = 0.25; Calleia and Howard, 2014), word
frequency norms (Mpeq/s00 = 9.18, SD = 11.83; Francis
and Kucera, 1982), word length (Mypesers = 9.11,
SD = 2.10), and type of misspelling (e.g., omission of a
letter, substitution of a letter, addition of a letter, homo-
phone; all ps <.05).

Procedure

Participants completed a 10-min familiarization training
within 24 h of their scan, in which they were provided
with demonstration of the test types and in-scanner
requirements (e.g., button press protocols). During
scanning, participants completed eight 15-word spelling
tests (divided into runs, such that each experimental
condition was presented twice) over the course of a 90-
min scan. These eight runs were presented in pseudo-
random order (i.e., the experimental conditions were
presented in random order, but no condition was
repeated until each was presented once). Runs
proceeded as follows: (1) instructions for 30s, which
stated condition requirements; (2) fixation for 4s; (3)
auditory and textual presentation of a sentence for 30 s;
and (4) repetition of (2) and (3) for another 14 sentences.
Participants responded by: (a) listening to and reading
the sentence; (b) mentally identifying the word to be
spelled and its proper spelling (search phase); (c)
pressing and holding a button to indicate the beginning of
the spelling phase (during which participants covertly
spelled the target word); and (d) releasing the button to
indicate completion of the spelling phase (see Fig. 1).
Participants automated this process (supported by a
>98% rate of protocol compliance in scanner) in the pre-
scan training. Immediately post-scan, participants were
administered a written spelling test identical to those
presented in-scanner, on which participants identified
how they spelled each word in the scanner.

fMRI data acquisition

Anatomical and functional images were acquired at the
University of Sydney’s Brain and Mind Research
Institute in Sydney, Australia, using a GE Discovery
MR750 whole body 3T scanner with a matrix 8-channel
head coil. Anatomical images were acquired using 196
axial slices, TR = 7.21s, TE = 2.76 s, flip angle = 12°,
Tl = 450, voxel size = 0.9 mm?, acquisition matrix =
256 x 256. Brain activation was assessed using the
blood oxygenation level-dependent (BOLD) effect
(Ogawa et al., 1990) with optimal contrast. Functional
images were obtained using 45 axial slices, TR = 3 s,
TE = 30 ms, flip angle = 90°, FOV = 240 mm, voxel
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Visual presentation of sentence = 30 sec
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Fig. 1. In-scanner experimental paradigm. At the beginning of each run, instructions for the upcoming condition and an example sentence were
presented for 30 s, followed by a 4-s inter-trial-interval (ITl), and then a 30-s trial during which a sentence was presented audio-visually. The visual
sentence remained on the screen for the entire 30 s, whereas auditory presentation varied with the length of the sentence (offset of which signaled
the start of the search phase). When ready to spell, participants pressed the button (signaling the end of the search phase and start of the spelling
phase), releasing it once spelling was completed (signaling the end of the spelling phase).

size = 1.875 x 1.875 x 3 mm, acquisition matrix = 128
x 128.

fMRI data preprocessing and analysis

The acquired fMRI images were preprocessed using the
Statistical Parametric Mapping software (SPM8; http://
www.fil.ion.ucl.ac.uk/spm). First, functional images were
slice-timing corrected and then realigned onto the mean
image for head-motion correction. The anatomical
image was then segmented and spatially normalized to
the T1-weighted Montreal Neurological Institute (MNI)
template, and the normalization parameters were
applied to the functional data. Finally, data were
spatially smoothed by convolving each volume with an
isotropic Gaussian kernel (FWHM = 6 mm). For the
analysis, all trials of each condition were averaged
within and across the condition’s two runs.

The fMRI data were analyzed using Partial Least
Squares (PLS) analysis (Mclntosh et al., 1996; Krishnan
et al., 2011). PLS is a multivariate technique that exami-
nes covariance between activity in all brain voxels and
experimental conditions, providing sets of mutually
independent spatial patterns depicting brain regions that
show the strongest relationship to the contrasts across
conditions. Using PLS, latent variables (LV), defined as
cohesive patterns of neural activity associated with a task,
were identified (the LV accounting for the greatest covari-
ance is extracted first) across conditions. Of primary inter-
est was brain activity during the search phase, for which
distinct patterns of activation were expected across
experimental conditions due to differing processes
required to plan a response (whereas the spelling phase
involved identical processes across experimental condi-
tions). We therefore isolated activity during the search
phase (starting at the offset of auditory presentation of
the sentence and ending at onset of spelling, as indicated
by a button press) and spelling phase (starting at button
press and ending at button release) as distinct events
for our event-related analyses. Activity at each time point
in the analysis was normalized to activity in the onset
timepoint. Our measure of each phase-related activity

was thus relatively uninfluenced by activity in the rest of
the trial.

A permutation test determined significance of each LV
and a bootstrap estimation of the standard errors
determined the reliability of each LV (Efron, 1985). Peak
voxels with a salience/SE ratio >3.0 were considered to
be reliable, as this approximates p < .003 (Sampson
et al., 1989).

RESULTS
Data screening

The out-of-scanner spelling test data was first explored to
identify any invalid trials in the scanner (those in which
participants indicated that they either misheard or
misinterpreted the target word). This resulted in a loss
of 7.2% of the data. Subsequent analyses considered
only remaining (valid) data. Rasch analysis of spelling
data was also conducted to evaluate the psychometric
properties of the spelling tests. General rules of thumb
for a Rasch analysis of dichotomous variables require
around 10 persons per item to ensure meaningful
analysis (Andrich et al., 2005). However, due to the small
number of persons (N = 12) relative to a larger number of
items (n = 90), the data matrix was transposed so the
variables associated with items were analyzed as per-
sons, and vice versa. The symmetry of person and item
parameters in the model permits such a transposition.
Rasch analysis of these data revealed a non-significant
item-trait interaction, X? = 32.62, p = .112, indicating
good overall fit of the data to the Rasch model. The PSI
— an index of internal consistency similar to Cronbach’s
alpha — of .85 indicated good reliability of the test.
Taken together these results suggested a valid and reli-
able scale.

Behavioral spelling performance

To evaluate the effect of experimental condition on
participants’ spelling accuracy, a repeated-measures
ANOVA was run on the proportional accuracy scores for
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each condition. Results indicated a main effect of
Condition, F(2,22) = 7.33, p = .004, 172 = .40. Post-hoc
analyses indicated that accuracy was highest in the
Blank condition (M = 0.74, SD = 0.20), followed by the
misspelled identified condition (M = 0.65, SD = 0.17)
and the Misspelled Unidentified conditions (M = 0.63,
SD = 0.17), which did not significantly differ. These
results were consistent with our hypotheses, insofar as
performance was highest in the low cognitive load
condition (Blank) compared to conditions predicted to be
higher in cognitive load (MIl, MU). This result was
subsequently explored in relation to the fMRI data.

fMRI results

To assess the neural correlates of the experimental
conditions, PLS analyses were carried out comparing
brain activation during the search and spelling phases of
each condition. During the search phase, two significant
patterns of large-scale activity were identified. The first
pattern differentiated the Blank condition from both the
misspelled identified (MI) and misspelled unidentified
(MU) conditions, accounting for 69% of covariance in

the data (see Table 1 and Fig. 2). A large-scale
distributed network showed higher activation in the Ml
and MU conditions than in the Blank condition, including
bilateral frontoparietal network, temporal regions, basal
ganglia, and caudate nucleus (Fig. 2a), whereas the
Blank condition activated bilateral angular gyrus,
posterior cingulate gyrus, right middle and medial frontal
cortices, parahippocampus, and occipital cortices
(Fig. 2b). In contrast to the Blank condition, which
engaged areas important for semantic processing,
concept retrieval, and conceptual integration (Binder
et al., 2009), the Ml and MU conditions indicated a
greater, likely intrinsic (Whelan, 2007), cognitive load by
engaging nodes of the dorsal attentional and working
memory networks (Corbetta and Shulman, 2002; Ashby
et al., 2005).

The second identified pattern differentiated the MI
from the MU condition, accounting for 31% of
covariance in the data (see Table 2 and Fig. 3). In
contrast to MI, MU engaged bilateral inferior parietal
lobule and fusiform gyrus, left dorsolateral and inferior
prefrontal cortices, left hippocampus, and putamen
(Fig. 3a), reflecting the engagement of areas that have

Table 1. Regions differentially engaged during Blank and MI/MU experimental conditions

Region Hem BA MNI coordinates Ratio
X y z
MI and MU > Blank
Dorsolateral prefrontal cortex L 9 —38 8 34 8.12
R 9 52 20 28 3.92
Inferior parietal lobule L 40 —44 -38 42 4.23
R 40 42 -38 42 6.14
Superior parietal lobule L 7 —24 —64 58 6.85
R 7 22 —58 62 5.92
Fusiform gyrus L 19 -10 —70 -6 4.51
R 19 16 -72 -6 5.44
Putamen L —-22 4 —6 5.78
R 20 6 -10 9.55
Middle temporal gyrus L 21 -38 -80 22 7.48
R 21 52 —76 20 4.25
Superior temporal gyrus L 22 -50 —48 16 4.76
R 22 56 —40 16 3.24
Middle occipital gyrus L 19 —44 -80 4 4.92
R 19 46 -84 4 9.05
Blank > MI and MU
Lingual gyrus L 18 —6 —78 -8 4.83
R 18 16 -72 —6 5.44
Parahippocampus L 19 —36 —44 2 5.23
Hippocampus R 26 —44 0 4.50
Medial frontal gyrus 10 2 62 0 4.43
Thalamus R 20 -10 16 3.73
Caudate nucleus L -20 18 18 4.26
Cuneus L 18 —-14 —-92 18 5.18
R 18 16 —-90 18 4.63
Posterior cingulate gyrus 31 4 —48 34 717
Angular gyrus L 39 —42 —66 36 3.42
R 39 44 —64 38 3.23
Middle frontal gyrus R 8 30 36 42 4.27

Note: Hem = hemisphere; R = right; L = left; BA = Brodmann’s area; Ratio = salience/SE ratio from the bootstrap analysis; x coordinate = right/left; y coordina-

te = anterior/posterior; z coordinate = superior/inferior.
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Ml & MU > Blank

Fig. 2. (a) Axial slices illustrating a pattern of whole-brain activity
during the mental search phase of the MI and MU conditions relative
to Blank and (b) a pattern of whole-brain activity during the search
phase of the Blank condition relative to Ml and MU conditions.
L = left hemisphere; R = right hemisphere.

been shown to be active during the retrieval of target
concepts in a contextually weak semantic environment
(Zempleni et al., 2007). In contrast, Ml engaged bilateral
angular gyrus, insula, left caudate nucleus, and medial
prefrontal cortices, reflecting semantic processing and
automatic comprehension of the identified, to-be-spelled
word (Binder et al., 2009; Fig. 3b). During the spelling
phase, all spelling conditions activated a whole-brain pat-
tern, which included the anterior and posterior cingulate
gyrus, angular and supramarginal gyri, superior frontal
gyrus, insula, and parahippocampus, accounting for
71% of covariance in the data (see Table 3 and Fig. 4).

DISCUSSION

This study sought to examine the domain-general (working
memory) cognitive demands of current domain-specific
educational assessments. Research in this area is
important given the increased prevalence of standardized

Table 2. Regions differentially engaged during Ml and MU experimen-
tal conditions

Region Hem BA MNI coordinates  Ratio
X y z

MU > MI
Inferior parietal lobule L 40 -36 -40 42 428
R 40 44 -38 46 512
Inferior frontal gyrus L 9 -32 28 -2 392
Dorsolateral prefrontal L 9 48 10 28 3.70

cortex
Putamen L —16 6 -6 549
R 18 10 -4 4.01
Hippocampus L —-26 —-40 -4 6.98
Fusiform gyrus L 37 —-42 -50 -—-16 8.71
R 37 40 -58 -—-10 5.21

Ml > MU
Angular gyrus L 39 —46 48 38 4.48
R 39 48 —-62 38 4.78
Caudate nucleus L -22 -4 26 5.35
Posterior insula L 13 —-42 -34 20 4.93
R 13 54 28 22  4.05

Medial frontal gyrus 10 -16 54 -2 321
8 6 54 34 730

Note: Hem = hemisphere; R =right; L = left; BA = Brodmann’s area;
Ratio = salience/SE ratio from the bootstrap analysis; x coordinate = right/left; y
coordinate = anterior/posterior; z coordinate = superior/inferior.

educational testing around the world and the high stakes
associated with students’ results on these tests. Our data
provide converging evidence that domain-specific
spelling assessments, based upon current international
and commercial methods of assessment, differ in the
cognitive load that they place on test-takers. Specifically,
error correction methods of spelling assessment (Ml and
MU), which were hypothesized to impose greater
cognitive load on test-takers, displayed increased
recruitment of neural areas associated with working
memory and decreased performance compared to the
production of correct spellings (Blank). Thus, claims that
different methods of domain-specific educational
assessment index students’ competencies in a consistent
manner appear questionable.

Specifically, consistent with prior studies (Croft, 1982;
Frisbie and Cantor, 1995; Willet and Gardiner, 2009), our
behavioral results indicated that participants performed
better in the production condition (based upon the UK’s
National Curriculum Tests) than in the error correction
conditions (based upon Australia’'s NAPLAN tests). This
was the case despite the tests being balanced on the
basis of word length, difficulty, and frequency. This finding
is consistent with suggestions that error correction (proof-
reading) forms of spelling assessment may require addi-
tional domain-general processes to overcome
interference from plausible (but incorrect) letter
sequences, to activate correct orthographic representa-
tions. Although other studies have found significant cor-
relations between error correction, proofreading,
production, and multiple-choice forms of spelling assess-
ment (with correlations ranging from .77 to .97), it is noted
that these tests often involved highly discrepant
task requirements (e.g., proofreading tasks requiring
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Fig. 3. (a) Axial slices illustrating a pattern of whole-brain activity
during the mental search phase of MU relative to Ml spelling condition
and (b) a pattern of whole-brain activity during the search phase of Mi
relative to MU. L = left hemisphere; R = right hemisphere.

identification of misspelled words without students cor-
recting them; Westwood, 1999), consequently complicat-
ing interpretation of these results.

A potential explanation for discrepant performance
across equivalent spelling tests is that different modes
of assessment may differ in the cognitive load they
place on test-takers. That is, Cognitive Load Theory
suggests that information varies in the demands
(cognitive load) it places on learners’ working memory,
as a function of inherent complexity of the information
(intrinsic load) and the complexity with which the

Table 3. Regions differentially engaged during spelling and fixation

Region Hem BA MNI coordinates Ratio

X y z

Spelling > Fixation

Anterior cingulate gyrus 24 0 38 0 6.44
Posterior cingulate 31 4 —62 32 1294
gyrus

8 24 26 48 10.06
39 —-46 -60 38 527

Superior frontal gyrus R
L
R 39 46 —64 40 948
L
R

Angular gyrus

40 -54 -54 34 343
40 56 -50 32 7.23
Precuneus 7 4 58 44 6.55
Insula 13 -34 20 20 4.93
13 36 —-24 22 10.65
36 —-30 -48 -4 9.16
36 30 -40 -4 6.23
18 32 -68 -4 430

Supramarginal gyrus

Parahippocampus

X aor

Lingual gyrus

Note: Hem = hemisphere; R =right; L = left; BA = Brodmann’s area;
Ratio = salience/SE ratio from the bootstrap analysis; x coordinate = right/left; y
coordinate = anterior/posterior; z coordinate = superior/inferior.

information is presented (extraneous load; van
Merrienboer and Sweller, 2005; Kirschner et al., 2011).
Although the foremost concern of Cognitive Load
Theory is designing instruction and learning experiences
that are founded upon a knowledge of human cognitive
architecture, our results suggest that these Cognitive
Load principles may similarly apply to assessment of stu-
dent aptitudes (rather than applying solely to the acquisi-
tion of these competencies). For instance, it has been
suggested that the two-step process in error correction
and proofreading tests (proofreading, then correction)
may require more, or more complex, activation and
manipulation of information in working memory compared
to production of correct spellings (Pearson, 2012).
Although this assertion was made without empirical sup-
port, brain-based evidence for this suggestion is derived
from our finding that a frontoparietal network, often
associated with working memory (Corbetta and
Shulman, 2002; Ashby et al., 2005), was more highly acti-
vated in the error correction conditions compared to the
production condition.

Whelan (2007) suggested mapping of fMRI activa-
tions to specific sources of cognitive load (which provides
a potentially more valid and reliable means to measure
cognitive load than the existing dual-task, self-report, or
physiological methods) suggests that the additional load
in the error correction conditions may have been the result
of its increased intrinsic load. That is, the processes
involved in error correction may be inherently more com-
plex (higher in element interactivity) than the production of
a correct spelling. In the current study, this was supported
by increased activation during error correction in the
dorsolateral prefrontal cortex, which Whelan (2007) aligns
with intrinsic load (whereas germane load is aligned to
networks underlying motivation and extraneous load is
aligned with the modulation of attention across sensory
modalities).

Although comparisons and rankings of individuals,
schools, and geographic regions are typically conducted
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Spelling > Fixation

Fig. 4. Axial slices illustrating a pattern of whole-brain activity during
the mental search phase of all spelling conditions vs. fixation. L = left
hemisphere; R = right hemisphere.

within assessments, this disparity in cognitive load across
assessments is nevertheless problematic insofar as
large-scale standardized educational assessment
programs often conceptualize the knowledge and skills
they assess in a similar manner (e.g., ‘spelling’), despite
differences in their methods of assessment. As such,
interpretation of an assessment’s results and attempts
to foster students’ associated knowledge and skills are
complicated by the lack of clarity regarding what
assessments actually measure. The current study
highlights the importance of assessment being clearly
aligned with, and derived from, the intended learning
outcomes. For instance, assessments aiming to
evaluate students’ ability to produce correct spellings,
yet requiring the students to correct spelling errors, may
not yield results reflecting students’ true competencies
in this area (increased extraneous load overwhelming
working memory). In contrast, if an assessment aims to
assess students’ ability to locate and correct errors,
clear statement of this aim would allow educators,
parents, and students to align their teaching, learning,
and efforts with these foundational abilities. While this
study focused on standardized methods of assessment,
the imposition of unnecessary, extraneous load is also
an important consideration for educators as they
develop their own classroom assessments.

Although it can be argued that our method of spelling
assessment itself carried additional cognitive load, in that
it required participants to mentally coordinate their
response instead of transcribing their answers, it is
critical to note that this requirement remained constant
across conditions. As such, performance on error
correction conditions involved additional domain-general
resources over and above those associated with the
response method. Nevertheless, given the constraints of
fMRI data collection, which prevented more traditional
methods of responding (e.g., no speech or head
movement), future research using alternative neural

recording methods is required to explore the cognitive
load of educational assessments in more traditional
testing contexts. Electroencephalography, for instance,
has been suggested as one possible means by which to
estimate cognitive load (Murata, 2005). Extending this
investigation to the assessment of children will also be
important to examine whether the same patterns of per-
formance and neural activations are evident across a
range of ages and expertise. Yet assessment is not exclu-
sive to young children. It is thus expected that the assess-
ment principles derived from this study can inform
assessment design more broadly, including at the sec-
ondary and tertiary levels.

CONCLUSION

This study provides converging behavioral and neural
evidence that current methods for assessing domain-
specific knowledge and skills vary in the cognitive load
they place on test-takers. As a consequence, some
forms of assessment appear to engage additional
domain-general cognitive resources, with consequent
decreases in performance. Given the prevalence and
high stakes of standardized educational assessments
internationally, our findings suggest that the
development and evaluation of educational assessments
should extend beyond simple psychometric evaluations
of validity and reliability to include consideration of the
cognitive processes and abilities required for successful
test performance. Specifically, the a priori specification
of the knowledge, skills and abilities to be assessed
must be clearly considered and explicated (e.g., the
number of words that can be correctly spelled or the
ability to correct erroneous spellings). Subsequent
assessment design should also consider how to optimize
the cognitive load placed on test-takers, to ensure that
students’ results are an accurate reflection of their true
levels of competency. In the context of the current study,
doing so would require redefinition of the abilities that
tests assess (i.e., spelling vs. proofreading) or the
redesign of assessments to ensure that the target
knowledge or skills are accurately reflected in students’
results. Although this study focused exclusively on
current standardized spelling assessments, the insights
generated are also able to inform principles of
educational assessment design and development more
broadly.
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